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ABSTRACT 
 

ENDOGENOUS FORCE TRANSMISSION BETWEEN EPITHELIAL CELLS AND A 
ROLE FOR α-CATENIN 

 

Sandeep Dumbali 
Old Dominion University, 2019 

Director: Dr. Venkat Maruthamuthu 
 

 

In epithelial tissues, epithelial cells adhere to each other as well as to the underlying extra-cellular 

matrix (ECM). E-cadherin-based intercellular junctions play an important role in tissue integrity. 

These junctions experience cell-generated mechanical forces via apparent adaptor proteins such as 

beta (β) catenin, alpha (α) catenin and vinculin. Abnormalities in these junctions may result in skin 

related diseases and cancers. Here, I devised methods to determine the endogenous intercellular 

force within cell pairs as well as in large epithelial islands. I further ascertained the factors that 

affect the level of inter-cellular tension. 

 

Experiments with pairs of epithelial cells exogenously expressing either of two altered E-cadherin 

constructs on top of endogenous E-cadherin showed that the inter-cellular tension for these cases 

was similar to wild type cells. This implied that the endogenous E-cadherin was dominant in setting 

the level of cell-cell contact tension. To analyze intercellular force transmission within large 

islands, I extended the traction force imbalance method to large micro-patterned islands. It was 

shown that colony level intercellular forces exerted at the midline by one half of the colony on the 

other were tensile in nature and showed significant anisotropy with respect to the midline 

orientation. Finally, to determine what molecular factors set the level of tension transmitted 

through single cell-cell contacts, I determined the inter-cellular tension in pairs of cells with 
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perturbed α-catenin. I found that α-catenin knockout not only decreased inter-cellular tension but 

also the traction forces exerted at the cell-ECM interface. This may be due to roles outside of cell-

cell junctions for α-catenin. However, α-catenin mutants with altered binding to vinculin binding 

did not show significant differences in inter-cellular tension compared to wild type cells. Thus, α-

catenin is essential for normal levels of intercellular tension, but the forces transmitted at cell-cell 

contacts are not very sensitive to the level of vinculin at the cell-cell contact in cell pairs. This may 

be because vinculin can also be recruited to cell-cell contacts by molecules other than α-catenin, 

such as β-catenin. These results highlight some essential and non-essential molecular factors 

regulating cell-cell junctional tension level. 
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CHAPTER 

1. INTRODUCTION 
 

 

In a multicellular organism, the most fundamental physical interaction between cells is that they 

cohere together to form an organized multicellular structure. This interaction is through cell-cell 

junctions wherein cells adhere to one another as well as an attachment to the extracellular matrix 

(ECM) that they secrete, which consists of a complex network of proteins and polysaccharide 

chains. One important example of multicellular structure is that found in epithelial tissue, wherein 

cells are closely bound together into quasi-2D sheets or multi-layered collectives. Epithelia cover 

all the inner and outer cavities in the body [1]. Epithelial sheets sit on the basal lamina, a thin mat- 

like layer of the extracellular matrix (ECM).  Depending on the tissue, the ECM, which is a 

network of cross-linked proteins and carbohydrates, can include different constituents, including 

collagen, laminin, elastin and fibronectin fibers. 
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Figure 1: Schematic depiction of epithelial tissues and the junctions involved in epithelial cell-cell 

contacts. (A) Multicellular cartoon showing epithelial tissue. (B.1) Anchoring junctions. (B.2) 

Occluding junctions. (B.3) Channel forming junctions. (B.4) Signal relaying junctions.  
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In an epithelium, cells are directly attached to each other by cell-cell contacts where actin 

cytoskeletal filaments are anchored, transmitting stresses across the interior of each cell from one 

adhesion site to another, as shown in Figure 1. Cell-cell or cell-ECM junctions are diverse in 

structure and have different functions other than transmitting cell-generated or external stress. 

Based on their structure and functions, these are classified into four junctions: (B.1) Anchoring 

junctions, which are attached to the cytoskeleton and include both cell-cell adhesions and cell-

ECM adhesions – these are involved in force transmission. (B.2) Occluding junctions help in 

sealing the gaps between epithelial cells and making a sheet, which serves as an impermeable 

barrier. (B.3) Channel-forming junctions link to the cytoplasm of neighboring cells, thereby 

creating passageways. (B.4) Signal-relaying junctions transmit signals from one cell to another 

across their plasma membrane at cell-cell contact site [1]. 

 

1.1  Introduction to Endogenous Force Generation by Epithelial Cells  
 

Epithelial cells are either constantly in contact with adjacent cells or with the ECM. They 

experience external forces and exert internal forces. External forces can be the forces applied by 

neighboring cells, by the moving surrounding liquid media or the forces from ECM substrate, 

while the internal forces are generated within the cell by the cytoskeleton [2]. These internal forces 

are generated by actomyosin linkages which consist of non-muscle myosin II motor protein linking 

to filamentous actin. Various processes in multicellular organisms like changes in shape, size, 

position and proliferation are due to both these forces generated by molecular motors and 

transmitted via cytoskeletal elements and adhesive molecules [3]. Cell-generated forces in 

epithelial cells are transmitted through the plasma membrane to the ECM mainly by integrins and 
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to the other cells mainly by cadherins. Transmission of these forces will be efficient only if the 

bonds between the actomyosin network and the adhesions are strong [4]. 

 

The cytoskeleton is a vastly dynamic cellular scaffolding assembly composed of filamentous actin 

(F-actin, 6 nm in diameter), intermediate filaments (10 nm in diameter) and microtubules (23 nm 

in diameter), which provide a fundamental structure for mediating force transmission [5]. These 

cytoskeletal elements consist of many monomers, rather than single proteins, that are able to span 

large distances within the cell. Microtubules are formed by polymerization of tubulins into hollow 

cylindrical structures that provide a track for motor proteins such as kinesins and dyneins to travel 

between different cell compartments [6]. Intermediate filaments are formed by the polymerization 

of vimentin, keratin and lamin monomers that connect the nucleus with the endoplasmic reticulum, 

mitochondria and golgi apparatus. This provides structural integrity to the cell. To form the 

cytoskeletal contractile apparatus, actin monomers assemble into filamentous actin (F-actin) 

together with myosin motors. The actomyosin assembly plays an important role in connecting 

multiple parts of the cell membrane and cell membrane to the nucleus [7]. These filaments at the 

cell’s plasma membrane anchor into clusters of proteins that include focal adhesions which link 

the actin cytoskeleton, through transmembrane integrin receptors, with the ECM as well as with 

cadherin adhesions that couple neighboring cells. 
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Figure 2: Cell-cell adhesion clusters and their interaction with the actomyosin network. (A) 

Homophilic binding of E-cadherin primarily initiates cell-cell adhesion between two epithelial 

cells. (B) E-cadherin binds actin filaments through adaptor proteins such as β-catenin, α-catenin 

and vinculin. (C) Actomyosin contractility produces pulling forces on adhesion complexes. These 

forces can induce conformational changes in α-catenin, thereby exposing buried vinculin-binding 

sites. In turn, vinculin binding promotes further binding of actin filaments to adhesion clusters. 
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This feedback mechanism enhances the mechanical coupling between the actomyosin network and 

adhesion clusters. 

 

Force transmission by newly formed E-cadherin-based cell-cell adhesions has been depicted in 

Figure 2. E-cadherin interacts with cytoplasmic proteins, which modulates cluster formation. E-

cadherin constitutively binds to β-catenin. α-catenin binds to β-catenin and mediates interaction 

with the actin cytoskeleton. Actomyosin contractility initiates pulling forces on the adhesion. This 

actomyosin tension at cell-cell adhesions opens a binding site in α-catenin for vinculin. Vinculin 

binding promotes further binding of actin filaments. Stability of α-catenin increases with vinculin 

recruitment, thereby strengthening mechanical coupling at adhesion sites [4]. 

 

1.2  Significance of E-cadherin in Cell-Cell Contacts 
 

E-cadherin, being a type I classical cadherin, is an important protein which mediates interactions 

between neighboring cells. E-cadherin influence morphogenetic changes that leads tissue 

remodeling and differentiation [8] Cell-cell contacts with cadherin junctions are considered to be 

mechanically active structures [9]. Cadherin adhesion not only functions in binding cells together 

but also coupling together the contractile cortices of adjacent cells to provide transmission of 

tension at the adhesion site [10]. Intercellular adhesion mediated by E-cadherin plays crucial roles 

in tissue repair, integrity, cell proliferation [11] and morphogenesis [12]. The actin cytoskeleton is 

closely associated with E-cadherin adhesion receptors and influences the regulation of cell-cell 

junction dynamics [13]. For functional cadherin adhesion, an intact actin cytoskeleton is required. 

Establishing a physical coupling with the actin cytoskeleton is necessary for classical cadherins to 

build junctions that can resist mechanical stress. An initial model postulated that α-catenin 



www.manaraa.com

7 
 

 
 

mediated stable association between the cadherin- β-catenin complex and F-actin [14-18]. A later 

study demonstrated that, as a monomer, α-catenin binds to β-catenin but showed high affinity for 

F-actin only as a homodimer [19]. It was also suggested that there couldn’t be any interaction 

between β-catenin and F-actin via α-catenin due to the overlap of β-catenin binding site and 

homodimerization domain of α-catenin [19-22]. This has helped in setting a molecular premise for 

the regulation of cadherin-catenin-actin but was unable to provide upfront clarification of the ways 

in which the actin cytoskeleton transmits tensile forces via E-cadherin adhesions. A possible role 

for α-catenin then emerged in a study with Drosophila embryos, where the lateral movement of 

cadherin clusters within the membrane was increased due to the depletion of α-catenin [23]. A 

more recent study showed that α-catenin can directly mediate the link between the cadherin- β-

catenin complex and F-actin under force [24]. Thus, α-catenin plays an important role in binding 

E-cadherin receptors to actin cytoskeleton despite the fact that some other aspects of cellular 

behavior can be affected by α-catenin, independently of its role in cadherin adhesion [25, 26]. 

 

1.3  Importance of Cell-ECM Traction and Intercellular Forces 
 

For efficient transmission of forces, strong links are required between the actomyosin network and 

adhesions. The composition and the size of the adhesion are critical parameters for such efficient 

force transmission. Adhesion adapts to mechanical stress by modifying the size and shape of 

individual adhesion clusters. Thus, the adhesion structure depends on both internally generated 

and external forces. For example, cytoskeleton generated forces on integrin adhesions induce an 

opposing balancing force from the ECM. This means that stresses cannot develop properly at focal 

adhesions if the ECM is not rigid enough [4]. The traction forces exerted by cells at focal adhesions 

are directly proportional to the rigidity of the ECM. On the other hand, adhesions can change cell-
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generated forces by influencing actomyosin assembly. Cell adhesions nucleate actin assembly and 

activate myosin II, thereby modifying actomyosin organization and dynamics. Integrin and 

cadherin adhesions have common signaling components that regulate actomyosin assembly. Due 

to this, mechanical and biochemical cross-talk exists between them. This cross-talk can either 

enhance or suppress adhesion, depending on the environmental and cellular context. This has 

important implications in morphogenesis as well as in tumor invasion and metastasis [4]. In vitro 

studies have shown that high traction forces exerted on cell-ECM contacts can disturb cell-cell 

contacts, which implies that actomyosin tension at cell-cell junctions is integrin dependent. 

Adaptive transmission of the forces allows cell movement, cell shape changes and tissue 

morphogenesis [4]. 

 

Why is it necessary to study cell generated or applied mechanical forces in cell biology? The 

fundamental reasonable answer is that numerous studies have illustrated that cells constantly 

experience mechanical forces that directly affect their functions in vivo [27]. The concept that 

forces can regulate tissue remodeling and development was proposed in the year 1892 by Dr. Wolff 

[28]. According to his study, the structure of bone tissue adapts to the mechanical environment 

under the observation that the principal stress lines were matched within a trabecula due to 

consistent physical loading [28]. Even researchers from the same era proposed that mechanical 

forces were responsible for shaping tissues and organs throughout embryonic development [29, 

30]. However, due to the lack of suitable tools, these scientists were unable to directly test these 

ideas experimentally. After a century passed, these mechanobiological concepts and their 

development now appear to be closely associated to the advent of facilitating technologies. The 

initial observations signifying that mechanical forces drive embryogenesis and bone structure were 
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a natural result of newfound microscopy methods. The recent resurgence in reviewing the role of 

mechanics in cell biology has largely been facilitated by a suite of tools to measure and influence 

such forces in vitro. Aspects of mechanically-induced anabolic bone growth in vivo were studied 

in vitro, wherein application of strains that would be experienced by bone during physical 

movement increases cell proliferation [31], osteogenic differentiation [32, 33] and bone deposition 

[34]. The first illustration that non-muscle cells can generate contractile forces on their own in 

addition to externally applied forces, by Harris and Stopak, showed that cells cultured on soft 

polymer substrates would wrinkle the substrate surface [35, 36]. Based on various studies over the 

past three decades, it is now clear that intracellular forces can be generated by most eukaryotic 

cells that are associated with a surrounding extracellular matrix or neighboring cells and that these 

contractile forces are critical for a number of biological processes, such as cell migration, mitosis, 

stem cell differentiation and self-renewal. These forces are clearly essential for physical processes 

like mitosis and migration [37, 38]. 

 

To study how mechanical forces regulate cellular functions, it is important to consider the cell not 

in isolation but rather in direct physical contact with the ECM or with neighboring cells. This is 

because adhesion of cells to the matrix affects the structural organization of the cell itself. The 

changes in cell shape and cytoskeletal architecture is partly due to integrin binding and clustering 

against ECM ligands [27]. As the cytoskeleton is connected to the nuclear membrane, forces 

experienced or generated by the cell-ECM module are consequently transmitted and sensed all 

over as a coordinated system. 

 

1.4  Factors that Regulate the Cellular Forces 
 



www.manaraa.com

10 
 

 
 

During adhesion by cadherins and integrins, activities like robust actin cytoskeletal 

rearrangements, activation of GTPase RhoA and enhancement of myosin II activity are triggered 

by the forces applied to adhesion receptors, resulting in the generation of a cell contraction force 

through the mutual sliding of actin and myosin II filaments, as shown in Figure 3 [39]. 
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Figure 3: Cadherin-RhoA mediated force transmission. E-cadherin junction formation initiating 

RhoA activity, thereby activating its effector ROCK. ROCK then promotes the formation of 

actomyosin stress fibers. 

 

At E-cadherin adhesions, the catenins and other adapter molecules modulate force transmission. 

α-catenin deficient cells, which do not directly bind to vinculin, have revealed an altered force 

response [40]. It is still unclear how α-catenin regulates cell-cell force transmission, although it is 

known to regulate forces transmitted during collective cell migration [41]. Interestingly, in 

epithelial cells, the affinity of E-cadherin is drastically reduced with α-catenin depletion, 

suggesting that there may be some contribution by α-catenin in modulating force-activated 

adhesion and strengthening of the adhesion [40]. Due to application of shear stress, β-catenin 

constantly folds and unfolds its armadillo [42], a binding domain, and is also phosphorylated. β-

catenin deficient cells fail to strengthen their adherens junctions in response to externally applied 

stress [43]. At cell-cell adhesions, non-muscle myosin II is activated by RhoA, a Rho GTPase. 

When cadherins from two adjacent cells engage, RhoA  is activated [44, 45] and this leads to 

sustained mechanical force exertion on the cell-cell adhesions [46]. Moreover, indirectly inhibiting 

RhoA by depletion [47] or directly inhibiting the RhoA [48], effector ROCK have both been shown 

to significantly decrease adherens junctional tension [49]. 

 

The traction or intercellular forces are influenced by other factors, such as the ECM. To measure 

these forces, it is important to understand the mechanical properties of the substrate or ECM. The 

cell traction measurement methods assume that the substrate’s material properties are the same in 

all directions, i.e., isotropic as well as linear elastic. A solid material deforms under the application 
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of force and there is a certain relationship between force and deformation. The effect of force 

depends on the area of deformation which can be defined in terms of stress, the force per unit area 

and strain, the fractional change in length of a material. This stress, for linear elastic materials, 

linearly increases with an increase in strain, and the relation therein is defined by stiffness or 

Young’s Modulus, E [50]. These linear elastic and isotropic substrates are also often assumed as 

infinite or semi-infinite in size compared to the cell size. For many methods, polyacrylamide 

(PAA) hydrogels and polydimethylsiloxane (PDMS) are used as cell substrates which are helpful 

in measuring traction forces exerted by cells. Increasing the rigidity of ECM or in vitro substrate 

showed considerable increase in cell-ECM traction forces and inter-cellular forces [51]. Moreover, 

different ECM ligands like collagen I or fibronectin under constant rigidity can affect traction and 

inter-cellular force magnitudes [51]. 

 

1.5  Methods used to Measure Cellular Forces 
 

The role of mechanical force in cell biology can be examined using a limited number of techniques 

which significantly vary in their assumptions, ease of use and in the technical and experimental 

setup required for a specific application. These techniques are mainly categorized based on the 

measurement of tissue generated forces versus single cell (or collection of cell) generated forces, 

measurement of deformation versus those that translate this deformation into cellular forces and 

the measurement of forces in two dimensions versus three dimensions [52]. 

 

To illustrate the existence of cellular forces, the easiest method is to measure the deformation of 

tissues, cells or substrates without correlating any of these deformations to actual forces. For 

instance, stromal cells implanted within collagen gels will compact the gel over a period of hours 
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to days, similar to the contractions that occur during wound closure [53-57]. The compaction, 

which is measured, considers the change in the diameter of the cell-laden gel polymerized in a 

well, driven in part by cellular forces. This compaction was shown to be substantially reduced by 

inhibiting myosin-based contractile activity [58]. Another technique involves ablating cell-cell 

junctions, such as in Drosophila embryos, using a laser and results in the apparent retraction of 

ablated edges, providing a qualitative measure of the magnitude of contractile forces transmitted 

by adjacent cells [49, 59, 60]. Even though these approaches sometimes converted the 

deformations to force using some assumptions, they are limited by complexities due to  plasticity, 

viscoelasticity and fracture [50]. 

 

Another method uses the incorporation of cantilevers of predefined stiffness that bend in response 

to tissue contraction. Using optical microscopy, the displacement of the free end of the cantilever 

can be imaged and the displacement values be used for the calculation of contractile forces with 

the help of beam theory [61]. These vertical cantilevers are microfabricated from silicone 

elastomer – PDMS - which allows the measurement of forces from constructs with a smaller 

number of cells (around 100-600 cells) [62-65]. 

 

Since forces transmitted through cell-cell and cell-ECM adhesions impact many cell processes, 

understanding and quantifying cell-cell or cell-ECM forces is very important. Many studies have 

used atomic force microscopy [66, 67], micropipette aspiration [68], magnetic cytometry [5], and 

fluorescence resonance energy transfer  (FRET) based on molecular force sensors to measure cell 

mechanics, adhesion forces and molecular tension in cultured cells [69]. The technique called 

traction force microscopy can be carried out using substrates made of polyacrylamide (PAA) 



www.manaraa.com

14 
 

 
 

hydrogels or elastic micropillars to quantify traction forces transmitted by cultured cells through 

cell-ECM adhesions [51, 70]. In traction force microscopy (TFM), the approach is to characterize 

the deformation of a substrate induced by traction forces by the cell and to use the deformation 

field to calculate the traction forces exerted by the cell at each point on the substrate. For tracking 

the deformation in gels, sub-micron sized fluorescent beads are placed within the substrate to act 

as displacement markers. This is the most widely used technique for the measurement of cellular 

forces [52].  

 

 In vivo, cells exist in a surrounding 3D ECM with a 3D shape that is unusually distinct compared 

to the cells plated on 2D surfaces [71]. Scientists are interested in understanding the nature of 

cellular traction forces that lie beneath these phenotypic variances in a 3D environment. It is 

difficult to measure tractions of cells in 3D, not only because of the requirement to track fiduciary 

markers in 3D, but also because the material properties of biologically relevant 3D ECM is much 

more complex than the synthetic materials used for measuring tractions in 2D [52]. 

 

1.6  Techniques to Measure Cell-Cell Adhesion Forces 
 

Several methods have been used to examine cell-cell adhesion biochemistry and biophysics, such 

as light microscopy with antibody staining or GFP-fused protein expression, optical tweezers [72] 

and shear flows [73]. High-resolution images of adhesion sites and underlying protein linkages 

can be obtained using electron microscopy [74]. With the help of techniques such as centrifugation 

assays [75], shear flow [76], cell poking [77] and micropipette assays [78] cell adhesion strength 

can be determined. Atomic force microscope (AFM)-based assays have been used for the direct 

measurement of the forces necessary to disunite contacts between adjacent living cells [79]. AFM 
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has been used for characterizing the mechanical junctions between cells at the molecular level, 

stretching and unfolding individual molecules and adhesion strength measurements [80, 81]. 

Although such approaches have progressed our cognizance of cell-cell adhesion, they do not 

provide any insight on the endogenous force which is present at the cell-cell adhesion. 

 

Förster/Fluoroscence resonance energy transfer (FRET), a molecular fluorescence technique, has 

been used to examine the proximity of fluorescent tags on a single or adjacent molecule to report 

on molecular-scale deformation [82]. FRET-based tools have been employed to quantify numerous 

parameters of the cell-material interface pertinent to cell responses, including molecular changes 

in cytoskeletal proteins induced by interactions with surfaces, such as changes in the crosslink 

density of hydrogel synthetic ECM equivalents [82]. Recent studies have shown how mechanical 

forces exerted at cadherin contacts can be visualized by converting them into optical signals using 

a FRET-based molecular tension sensor [83]. In these studies, in the cytoplasmic domain of E-

cadherin, between plasma membrane and catenin binding domain, a tension sensor was introduced. 

Due to the highly sensitivity of a FRET signal toward the distance between the fluorophores, 

increased tension resulted in low FRET efficiency [84]. The FRET efficiency of E-cadherin 

tension sensor module (EcadTSMod) at cell–cell contact sites, as shown in figure 4, was 

significantly decreased compared to constructs lacking the cytoplasmic domain of E-cadherin, like 

for vinculin at cell-matrix sites [85]. This indicated that the EcadTSMod is under tension in cell–

cell adhesions and is dependent on the catenin-binding domain of E-cadherin [84]. It was also 

noted that the E-cadherin cytoplasmic domain is under 1 to 2 pN of constitutive load from the 

cytoskeleton. This suggested that at the cortical actomyosin cytoskeleton, the cadherin-catenin 

linkage could act as a constitutive membrane anchor [83]. 
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Figure 4: Schematic depiction of E-cadherin FRET molecular tension sensor. (A) Model showing 

the E-cadherin-catenin-actin linkage. Mechanical tension transmission by E-cadherin between 

cells via the extracellular domain to the actin cytoskeleton through β-catenin, α-catenin and other 

proteins is depicted. (B) The tension sensor module is made of monomeric teal fluorescence 

protein (mTFP)/monomeric enhanced yellow fluorescence protein (mEYFP) separated by an 

elastic linker. This tension sensor module is inserted in the cytoplasmic domain of E-cadherin, 

which transmits force. High and low FRET indices correspond to low and high tension 

respectively.  

 

Inter-cellular forces have been measured more directly using a technique called the traction force 

imbalance method. This method is based on the measurement of traction forces, followed by 

computation of the force exerted at the cell-cell contact using physical force balance. This 

approach is detailed more in Chapter 3. 
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CHAPTER 

2. FLEXIBLE CELL SUBSTRATES AND THEIR STIFFNESS 
MEASUREMENT 

 

[Portions of this chapter having been adapted directly from the following published article: 

Bashirzadeh Y.*, Chatterji S.*, Palmer D.*, Dumbali S.*, Qian S., Maruthamuthu V., Stiffness 

Measurement of Soft Silicone Substrates for Mechanobiology Studies Using a Widefield 

Fluorescence Microscope. J. Vis. Exp. (137), e57797, doi:10.3791/57797 (2018).] (* These 

authors have contributed equally.) 

 

2.1  Introduction 
 
2.1.1 The Extracellular Matrix  
 

The effects of the extracellular matrix (ECM) on epithelial cells are mediated via specific receptors 

called integrins located on the surface of the cells, particularly on the basal surface of the cells. 

This cell surface contacts the basal lamina, a layer of basement membrane (a specialized ECM) 

comprised of numerous proteins and glycoproteins, typically including laminins, collagen, 

entactin, along with different proteoglycans [86]. As shown in Figure 5, the basement membrane 

underlies the typical epithelium or vascular endothelium and consists of two thin structural layers: 

a basal lamina, which is synthesized by epithelial or endothelial cells [87] and a reticular lamina, 

secreted by fibroblasts [88]. With the use of the electron microscope, it was found that the basal 

lamina is subdivided into a clear lamina lucida, which rests directly beneath the epithelial cells, 

and a structurally opaque lamina densa [89, 90]. The nature of ECM is controlled by the cell’s 
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nucleus through its transcriptional events and, reciprocally, the ECM modulates these same events, 

acting through cell surface receptors and the cytoskeleton [91]. 

 

 

 



www.manaraa.com

19 
 

 
 

 

Figure 5: Basement membrane. The basement membrane underlies the typical epithelium or 

vascular endothelium and consists of two thin structural layers. One layer is the basal lamina made 

by epithelial or endothelial cells. The second layer is the reticular lamina made by fibroblasts. 

Electron microscope data show that the basal lamina consists of a clear lamina lucida next to 

epithelial cells and an opaque lamina densa. The lamina lucida contains integrins, laminins (1, 5, 

6 and 10), and collagen XVII, as well as type IV collagen, and dystroglycans. The lamina densa 

contains type IV collagen fibers, entactin/nidogen-1, perlecan, and heparan sulfate proteoglycans. 

The reticular lamina contains collagens I, III, and V and various proteoglycans. (The legend is 

adopted from the review article [87].) 

 

2.1.2 Stiffness of Cell Substrates as a Relevant Parameter Stiffness 
 

In vivo, the microenvironment of cells consists of a complex, but vastly organized environment, 

with a diverse collection of proteins, sugars, other cells. The cell’s local mechanical environment 

is dictated by spatial orientation of the cell and the composition of a cell's microenvironment [91]. 

The mechanical environment is composed of endogenous forces generated by the cells themselves, 

as well as exogenous forces that are applied to cells by the surrounding microenvironment. 

Cytoskeletal contractility is responsible for the endogenous forces generated by cells while 

exogenous forces subsist in a variety of forms, including gravity, shear as well as tensile and 

compressive forces [92, 93]. These exogenous forces are exerted by the ECM through interaction 

with cells. Thus, an important mechanical effector of cell behavior is the local stiffness of the ECM 

[91]. 
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Figure 6: Different tissues in the human body with their specific stiffness. The biomechanical 

properties of a tissue in terms of elastic modulus (stiffness), measured in pascals (Pa), vary 

markedly between organs and tissues. Stationary tissues such as brain, or compliant tissues such 

as lung, show low stiffness, whereas tissues exposed to high mechanical loading, such as bone or 

skeletal muscle, exhibit higher stiffness.  

 

The property of a material that enables it to resist deformation in response to an applied force is 

called as stiffness. Stiffness is used to specify whether a material is compliant or rigid. Our tissues 

are comprised of different types of ECM molecules that feature a wide range of elastic moduli, 

and each tissue/organ has specific stiffness (Figure 6) for fulfilling physiological needs. For 
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example, bone provides structure and protects all internal organs; hence, it is  much stiffer 

compared to other tissues in the body [91]. 

 

In vitro cell research is mostly conducted on tissue culture polystyrene, which has the stiffness of 

~1 GPa, while that of the tissues in the body ranges from 100 Pa (for brain) to 100 kPa (for muscle 

tissue) [94]. This stiffness disparity significantly affects the way cells respond to their 

microenvironment. The majority of researchers are thus committed to explicating the effect of 

substrate stiffness on the functions of various cell types [95], including stem cells and their fate 

[96]. In an effort to aid  a better understanding of stiffness-dependent cell dynamics, different types 

of gels such as polyacrylamide (PAA) hydrogels [97, 98], polyethylene glycol (PEG) [99], 

polydimethylsiloxane (PDMS) [100] and soft silicone [101] have been developed. Many studies 

of stiffness regulated cell responses employ PAA gels, which are not only less expensive and 

simple to implement, but also display a physiologically appropriate stiffness range of 0.3 – 300 

kPa [95, 102, 103]. 

 

2.2  Methods 
 
2.2.1 Polyacrylamide Gel Substrates and ECM Coupling of ECM and Fiducial Markers 
 

Polyacrylamide hydrogels are widely used as cell culture substrates to understand cell responses 

to the physical characteristics of their microenvironment [104, 105]. Polyacrylamide hydrogels are 

a network of cross-linked acrylamide units. The Young’s Modulus of the material can be tweaked 

by varying the amount of bis-acrylamide cross-linker with the total acrylamide monomers in the 

gel precursor solution [105]. Polyacrylamide is considered as a linearly elastic material [106, 107] 

as it exhibits a constant storage modulus throughout a wide range of strains [108]. Hence, the 
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mechanical characterization of these gels by time-independent recovery after mechanical loading, 

is possible [109]. Moreover, the basic assumption of linear elasticity also implies that materials 

that undergo reversible deformation are also not affected by the rate of loading [110].  

 

Alterations in polyacrylamide substrate stiffness influence cell shape [95], cell proliferation [102], 

functional maturation [111], and cell differentiation [112]. To control cell adhesion, 

polyacrylamide substrates can be selectively coated with ECM proteins [113]. Protein coated gels 

can further be used to quantify cellular forces with the help of traction force microscopy (TFM), 

by recording the displacement of microbeads embedded within the gel [114].  

 

2.3 Measurement of Polyacrylamide Gel Substrate Stiffness Using a Widefield 
Fluorescence Microscope 

 

 

[Portions of this chapter having been adapted directly from the following published article: 

Bashirzadeh Yashar, Chatterji Siddharth, Palmer Dakota, Dumbali Sandeep, Qian Shizhi, 

Maruthamuthu Venkat. Stiffness Measurement of Soft Silicone Substrates for Mechanobiology 

Studies Using a Widefield Fluorescence Microscope. J. Vis. Exp. (137), e57797, 

doi:10.3791/57797 (2018). 

 

Epithelial and other cells in soft tissues adhere to a microenvironment whose stiffness typically 

falls in kilopascal range [91]. Flexible substrates such as polyacrylamide [115] and silicone [116] 

gels have proven to be excellent biomimetic substrates for cell culture. Several methods have been 

used to measure the stiffness of flexible substrates, including atomic force microscopy, 
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macroscopic deformation of whole samples upon stretching, rheology and indentation using 

spheres and spherically tipped microindentors [117]. While each technique has its own advantages 

and disadvantages, indentation with a sphere is an especially simple yet fairly accurate method 

that only requires access to a widefield fluorescence microscope. Recently, confocal microscopy 

has also been used for an elegant characterization of the indentor method [118]. Here, we show 

that a widefield microscope may be sufficient, provided a suitable protocol is used to confine 

fluorescent beads to the top surface or to a thin slice in the top region of the substrate. To 

characterize the Young’s moduli of isotropic linear elastic substrates, this simple method only 

employs a widefield fluorescence microscope for the actual stiffness testing. Use of suitable 

indentors and methods to restrict fluorescent marker beads to the substrate top surface enable this 

method [101]. 

 

2.3.1 Methods and Measurement Protocol 
 

In order to fabricate the polyacrylamide hydrogel, a 22 x 22 mm coverslip was treated with 

hydrophobic reagent (we use the commercial product Rain-X). The mixture of acrylamide and 

bisacrylamide is then polymerized between the hydrophobic coverslip and an activated coverslip 

(activated by treating successively with 2% 3-aminopropyltrimethyoxysilane in isopropanol and 

1% glutaraldehyde in distilled water) [48], as shown in Figure 7. The same procedure is repeated 

to polymerize another layer of PAA gel; this time the volume is 20% of the former gel mixture. 

This second gel mixture also contains micron sized fluorescent beads. This gel is then ready for 

the measurement of its stiffness using a widefield fluorescence microscope. 
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Figure 7: Schematic depiction of the procedure for the preparation of PAA gel substrate and 

coupling of fluorescent microbeads to the top surface. (A) Polyacrylamide gel preparation using 

polymerizing mixture: A drop of the polymerizing solution is placed on a hydrophobic coverslip 

and sandwiched with an activated coverslip on the top. After 45 minutes of polymerization, a PAA 

gel is obtained. This step is repeated one or more times if a thicker PAA gel is required. (B) Using 

20% of the volume for the first layer, but with fluorescent microbeads incorporated, a thinner PAA 

layer is polymerized on the top of the thicker PAA gel layer below.  
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2.3.1.1 Measurement of PAA gel with Sphere Indentation using a Widefield Fluorescence 

Microscope 

 

The following is the procedure for measuring PAA gel stiffness:  

a) Place the gel in the Petri dish and ensure that it contains at least 1 mL of PBS to have the 

gel surface several mm below the liquid surface. 

b) Using pointed tweezers, drop five 1 mm zirconium sphere indentors on the gel. Immerse 

the spheres into the liquid medium and drop them, away from the edges of the gel layer 

and at least 5 indentor diameters away from the location of the other indentors. 

Note: When dropped above the liquid surface, the spheres may fail to enter the liquid 

medium (float) due to the liquid medium’s surface tension. 

c) Place the Petri dish with the gel on the microscope stage so that it is possible to image 

through the Petri dish base. 

d) Using phase imaging with a 10X objective (such as a dry 10X objective of NA 0.30), locate 

and bring a sphere indentor into focus. 

e) Take a phase image of a part or the whole of the indentor and save this image. Use a tile 

scan if available. If the indentor has any visible defects, discard and replace it with another 

indentor. 

f) Under live phase imaging, pan to the left of the indentor’s edge so that the left edge of the 

frame is at least a distance of ~1.5 R from the indentor center. Ensure that the center of the 

indentor remains visible on the right side, close to the right edge of the image frame. Take 

a phase image and save it. 
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g) Switch the microscope light source to the illumination for the red fluorescent channel. With 

the x- and y-coordinates unchanged (the x-y position of the indentor center within but near 

the right edge of the frame), focus down (decrease Z) until the red fluorescent microbeads 

under the sphere indentor’s center just go out of focus. 

h) Take a z-stack with an image for every z-increment of 0.5 μm till the microbeads in the top 

layer of the gel far from the indentor (near the left edge of the imaging frame) go out of 

focus. 

i) Repeat steps d) – h) with the other indentors on the sample. 

 

2.3.1.2 Calculating PAA Gel’s Stiffness (Young’s Modulus) 
 

The following is the procedure for calculating PAA gel stiffness: 

i. Open the phase image of the indentor using ImageJ, click on the line tool, and measure the 

indentor’s diameter in pixels. Click and hold on a point on the indentor edge; move the 

cursor to a diametrically opposite point on the edge and note the length in pixels displayed 

on the status bar of the ImageJ main window before releasing the cursor. 

a. Ensure that the unit of length is set to pixels by clicking Analyze | Set Scale and 

checking the Unit of length. 

b. Convert the indentor’s radius in pixels to μm by taking into account the objective 

magnification and the CCD camera pixel size (R in μm = R in pixels x the CCD 

camera pixel size in μm / the objective magnification). 
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ii. Open the red channel z-stack of microbead images (if the microbeads are red fluorescent) 

in ImageJ by clicking on File | Import | Image Sequence and select any image in the stack 

and click OK to open the stack. 

Note: F1 is the frame number at which the microbeads under the indentor center are in the 

best possible focus and F2 is the frame number at which the microbeads (at a region of 

~1.5 R away from the bead center) near the left edge of the frame are in the best possible 

focus. The z difference between the two frames is the indentation depth δ. 

a. Using the line tool in ImageJ, draw a line across a well-defined microbead in the 

image. Click on Analyze | Plot Profile and click on the Live button to obtain the 

updated line scan intensity across the bead while selecting different frames. The 

frame that gives the highest value of the maximum intensity can be chosen as the 

frame in focus. 

b. Since the z-increment between the frames in the z-stack is 0.5 μm, calculate the 

indentation depth in μm as δ = (F2-F1) x 0.5. 

iii. Calculate the force exerted on the gel by the indentor due to its weight (minus the opposing 

buoyant force), that is, the indentation force F, as the volume of the indentor x (the density 

of the indentor - the density of the liquid medium) x the acceleration due to gravity. Use 

the equation: 

 𝐹 = (43) × 3.142 × 𝑅3 × (ρindentor − ρmedium) × 𝑔)  

where,  

R – radius of the indentor; ρindentor – density of the indentor;  ρmedium – density of the liquid medium and  
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g – acceleration due to gravity (9.81 m/s2).   

All quantities on the right-hand side in SI units to obtain F (in N). 

iv. Calculate the Young’s modulus (E) of the gel using a modified [119] Hertz Model [120] 

equation: 

𝐸 = 𝑐 3(1 − 𝜗2)𝐹4𝑅0.5𝛿1.5  

Where: 

c = a correction factor that modifies the Hertz model expression; 

ϑ = Poisson’s ratio of the PAA gel (taken as 0.5 as for incompressible materials7); 

F = the indentation force; 

R = the indentor radius; and 

δ = the indentation depth. 

All quantities on the right-hand side in SI units to obtain E in Pa. 

 

2.4 Results and Discussion 
 

Various parameters that characterize the spherical indentation of the gel surface are shown in 

Figure 8A. Phase imaging is used to capture either (A) the entire image of the indentor as shown 

in Figure 8B (using image stitching, if necessary) or (B) part of the image of the sphere. The only 

parameter to be derived from the indentor's image is its diameter. For example, for the indentor 

we used in this protocol, different individual indentors from the same lot had diameters that ranged 

from 950 μm to 1,200 μm with a mean value of 1,037 μm and a standard deviation of 47 μm (8 

indentors). Note that the diameter measured for a particular indentor (rather than the mean diameter 
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for many indentors) should be used for the stiffness calculation for the indentation-induced by that 

particular indentor. 

 

 

 

Figure 8: Schematic illustration of sphere indentation of the PAA gel surface. (A) This schematic 

depiction shows a spherical indentor on the surface of a PAA gel sample. Various parameters of 

interest are indicated. (B) This panel shows an image of a 1 mm indentor (on a gel sample) obtained 

via phase imaging. The scale bar indicates 250 μm. {The figure and the legend have been adapted 

from [101].} 
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Fluorescent images of the microbeads in the top surface of the gel are taken at an x-y frame position 

so that the region under the indentor is in the far-right part of the frame. The region in the far-left 

part of the frame is chosen to be the region away from the indentor as shown in Figure 9. Z-stack 

images of the regions under the indentor and away from the indentor are shown in Figure 10 as 

well. For the 1 mm diameter zirconium indentor used with PAA gel, the z-values at which the 2 

regions come into focus differed by about 20 μm (δ). This is much smaller than the thickness of 

the gel, which could be around 400-500 μm. Using the density (4.66 g/cm3) of the zirconium 

indentor (which is actually made of a mixture of zirconium dioxide and silicon dioxide) and the 

density of the liquid medium (for PBS: 1.01 g/cm3), the net force exerted on the gel can be 

computed. For the case under consideration, it was in the 20 - 25 μN range. Using the sphere 

indentation method of this protocol using a widefield microscope, polyacrylamide gel was made 

with an acrylamide to bisacrylamide ratio of 7.5%:0.1% was found to have a Young's modulus of 

22.1 ± 4.2 kPa. Finally, to validate the sphere indentation method that uses a widefield microscope 

as we described in this protocol, we also measured the Young's moduli of a polyacrylamide gel of 

the same composition with a rheometer – this yielded a Young's modulus of 21 ± 3 kPa. 
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Figure 9: Bead image acquisition and determination of the in-focus image. (A) This fluorescence 

image shows microbeads on the top surface of a gel sample (the data for this figure was obtained 

with a silicone gel) and the desired x-y location of its frame relative to the indentor (dotted line). 

The scale bar indicates 150 μm. Panels B and C show z-stack fluorescence images of regions on 

the PAA gel surface (B) under the indentor and (C) away from the indentor (boxed regions in the 

top image). The indicators z1 and z2 correspond to the z-values at which the region under the 

indentor and the region away from the indentor are in focus, respectively. The scale bars indicate 

20 μm. The monochrome images shown are those obtained in the red channel, since nominally 

pink microbeads were used whose excitation and emission profiles fit the red channel. (D) This 

panel shows an intensity line scan across a micro-bead (shown in the inset image with a yellow 

line across it) as the focus is varied in z-increments of 0.5 μm. The focus (z-value) corresponding 

to the in-focus image can be objectively chosen based on the z-value corresponding to the line 

scan with the highest maximum intensity. The scale bar in the inset indicates 20 μm.  

 

While the sphere indentation method is easy to implement, careful attention must be paid to the 

choice of indentor and the thickness of the gel sample. The equation used to calculate the Young's 

modulus is valid under a set of conditions and these are typically satisfied when the thickness of 

the gel sample is > 10% of the indentor radius and < ~10x the indentor radius. We found that a gel 

thickness was 5-10x the indentor radius was a good choice, wherein the sample thickness was not 

too high (i.e., the objective working distance does not become a limitation) and the calculated 

stiffness was also not too sensitive to the exact value of the gel thickness. The choice of spherical 

indentor should also be such that the indentation depth δ is < 10% of the gel thickness as well as 
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< 10% of the indentor radius. With these considerations in mind, indentors of both different 

material and diameter can be used to measure the stiffness of softer and stiffer gel. The 

determination of the indentation depth is the most critical step of this protocol. The method 

suggested in this protocol to identify in-focus images should help determine the indentation depth 

reliably. It should also be noted that the stiffness calculation used for the sphere indentation method 

uses Hertzian theory, which assumes frictionless contact. 

 

2.5 Q Gel Substrates and Coupling of ECM and Fiducial Markers 

 

Q gel was prepared in a petri dish by mixing A and B solutions at a 0.5:1.1 ratio, followed by 

curing at 100 degrees C for an hour. Fluorescent beads of 0.46 micrometer diameter were coupled 

to the silicone top surface using shallow UV treatment followed by EDC/NHS chemistry. A 

millimeter-scale sphere was used to intend the top surface (by gravity); fluorescent beads on the 

indented silicone surface were imaged using a fluorescent microscope and the resultant images 

were analyzed to calculate the Young's Modulus of the silicone substrate as specified in the 2.4 

section. 
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Figure 10: Schematic representation of coupling collagen I and fluorescent beads on the top surface 

of Q gel. (A) Making of Q gel and curing it for 1 hour at 100⁰ C. (B) Cured Q gel (C) Shallow UV 

Exposure. (D) EDC-NHS-Collagen I-Beads (ENCB) mixture. (E) Gel incubation with ENCB 

mixture for 30 minutes. (F) Final Q gel coupled with collagen and beads.  
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CHAPTER 

3. TRACTION FORCE MICROSCOPY AND INTERCELLULAR FORCE 
MEASUREMENT WITH E-CADHERIN MUTANTS 

 

3.1 Introduction 
 

3.1.1 Traction Force Microscopy 
 

Within the multiple disciplines of biomedical research, mechanobiology is, relatively, an emerging 

perspective. Earlier studies have shown that cells exert and resist forces to enable normal function 

[112, 121]. Hence, it is important to quantify these cell generated forces across various interfaces 

of relevance in biology [122, 123]. In addition to the convolution of the mechanical response of 

cells, cellular force analysis is innately challenging due to the sometimes involved physics of 

mechanical force quantification [124]. The approach of traction force microscopy remains the 

principal technique for investigating cell-exerted forces. Broadly speaking, traction force 

microscopy experiments and quantifications involve capturing surface displacements and 

computing tractions exerted by cells on an in vitro fabricated elastic substrate [125].  

 

TFM has proven to be a leading technique owing to its ease of implementation and flexibility to 

biomimic cellular environments, along with an established analysis procedure. These experiments 

can be performed with the help of a widefield fluorescent or confocal microscope [124]. In general, 

cells are seeded on a thin elastic ECM coated hydrogel, which has fluorescent beads as fiducial 

markers. Imaging of the bead positions followed by image processing helps quantify 2D or 3D 

displacement of the gel. With a knowledge of the mechanical properties of the hydrogel or 

substrate and these displacements, forces applied by cells on the substrate can be quantified [124]. 
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3.2 Methods 
 

3.2.1 Computation of Traction Forces 
 

 

Previous studies have investigated cellular tractions using traction force imbalance method. The 

idea was to calculate the endogenous force at cell-cell interface using the balance of traction forces 

applied on the substrate. Using experimental and analytical methods, traction force microscopy 

was carried out (Figure 11). The displacement of the fluorescent beads embedded within PAA gel 

were very much less than 10% of the gel thickness. For the computation of bead displacement, 

particle imaging velocimetry was used to calculate displacements on a specified grid [51].  
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Figure 11: Experimental and Analytical Schematic of Traction Force Microscopy. (A) Side view 

with corresponding top view of a single cell on the substrate with fluorescent beads. The red arrows 

are the contractile forces applied by the cell on the substrate. The vector sum of the traction forces 

exerted by a single cell is zero [51]. (B) Steps within traction force microscopy. The sample with 

cells on the substrate with beads is imaged using a widefield microscope (here) for imaging. The 

images of cell and the beads (2 images for the beads: one with the cell and other without the cell) 

under stressed and relaxed conditions are taken. These images are then aligned using image 
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processing software so as to calculate displacement field. Using custom scripts in MATAB, the 

traction stresses are then calculated. 

 

With the help of this displacement field, the stress field was calculated with the assumption of the 

substrate as a linear elastic half-space. Fourier transform traction cytometry (FTTC) was then used 

to get the solution of the force-displacement relationship involving the Green’s function, with 

zeroth-order regularization [126-128]. In order to obtain promising solutions, which can, in turn, 

significantly improve FTTC method, regularization was carried out [127]. To obtain the stress 

field in real space, the problem was first solved in Fourier space and then inverted back to real 

space [127, 128]. This FTTC analysis enabled the reconstruction of traction stress at a selected 

grid spacing. The traction force vector at any that location was simply calculated as the product of 

unit grid area and the traction stress vector [51] (note that even though stress is a tensor, it can be 

considered as a vector once the area is specified). 
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Figure 12: Fourier transform traction cytometry [129]: equations involved in the calculation of 

traction stress field. 
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Figure 13: Traction forces within a single cell. (A) Phase image of a Madin Darby Canine Kidney 

(MDCK) single cell. Red arrows indicate stress vectors. Yellow boundary specifies the region used 

to calculate summation of the traction forces. (B) Heat map plot indicating the magnitudes of the 

traction stresses in (A). (Scale bar, 5μm) 

 

As shown in Figure 13, MDCK single cells were considered in which the majority of the traction 

stresses were exerted near the cell boundary and were directed towards the center of the cell. These 

stresses exhibited a distribution similar to that of focal adhesions in single cells without the 

colocalization of E-cadherin at cell-ECM based adhesion, as expected. The traction force vector, 𝑇𝑖⃗⃗   was found by multiplying the traction stress by the unit grid area. The total cell-ECM 

endogenously generated force was the sum of traction force magnitudes across the cell, ∑|𝑇⃗ 𝑖|. The 

sum of traction force magnitudes across the cell was previously found to be around 250 nN [51]. 

The unbalanced traction force was calculated using the vector sum of the traction forces across the 
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cell, ∑𝑇𝑖⃗⃗  . In order to distinguish the magnitude of unbalanced force to the total sum of cell-ECM 

force, the ratio |∑𝑇𝑖⃗⃗  |/∑|𝑇⃗ 𝑖| was considered. This unbalanced force for single cells was previously 

found to be around 5 ± 3% of the total cell-ECM force [51]. 

 

3.2.2 Intercellular Force Measurement in Cell Pairs 
 

 

Using the method described in section 3.2, the traction force underneath cell pairs was calculated. 

The total sum of magnitudes of cell-ECM forces, for the cell pair as a system, was found to be 

approximately 400 nN [51]. The percent unbalanced traction force observed within cell pairs was 

similar to that observed in single cells. The sum of traction vectors under a cell within a cell pair 

was also determined, 𝐹 cell 1 = ∑cell1𝑇⃗ 𝑖. This imbalance was inferred as the force exerted at the 

cell-cell contacts by one cell onto the other, within the cell pair, as the cell is in mechanical 

equilibrium. Thus, in a cell pair, an equal but opposing force was exerted by both the cells on each 

other. 
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Figure 14: Calculation of intercellular force using the unbalanced traction force. (A) Phase image 

of a cell pair. Red arrows indicate stress vectors. Yellow boundary is specifying the region used to 

calculate the total sum of traction force and green dotted line indicates the region used to calculate 

the traction sum of a single cell within the cell pair. (B) Heat map plot indicating the magnitudes 

of traction stresses in (A). (Scale bar, 5 μm) (C) Violin plot showing distribution of percent 

imbalance of traction forces. 

 

3.3 Results and Discussion 
 

3.3.1 Intercellular Force in Cell Pairs Expressing E-cadherin Mutants 
 

 

Cells constantly experience mechanical tension via intercellular junctions. These junctions are 

never static. They are dynamic and involve constant turnover of adhesion proteins in various 

physiological processes. These junctions must also be robust in order to maintain cell-cell contact 

strength. E-cadherin junctions are calcium dependent junctions. Studies have shown that depleting 

calcium disrupts intercellular junctions [130]. This tool was used in studies providing insights on 

how cadherin turnover dynamically controls intercellular junctions. Time dependent calcium 

depletion caused a percent drop in cell-cell contact area and intercellular forces [51]. Another study 

demonstrated that, after calcium depletion, cadherins were eliminated by endocytosis [131]. In 

epithelial cells, cadherin endocytosis critically influences physiological processes.  
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Figure 15: Schematic of E-cadherin constructs: E-cadherin wild type with full length E-cadherin, 

E-cadherin dileucine mutant with a mutation that inhibits endocytosis but retains cytoplasmic 

domain and E-cadherin tailless mutant lacking the cytoplasmic domain that binds to β-catenin and 

other cytoplasmic proteins.  

 

To study the effect of endocytosis on intercellular forces, I examined cells expressing an E-

cadherin construct inhibiting endocytosis due to a mutated dileucine motif (LL) and E-cadherin 

lacking the cytoplasmic catenin binding domain (Figure 15). The expression of these constructs 

were higher compared to endogenous E-cadherin [129]. E‐cadherin endocytosis is known to be 

driven by the dileucine motif (LL) [130]. Cells stably expressing the 3 constructs shown in Figure 

15 were seeded on PAA gels coated with collagen I and fluorescent beads. Using the traction force 

imbalance method, intercellular forces were calculated and compared with that for wild type cells. 

As shown in Figure 16, there was no qualitative difference in the cell traction plots of these 

constructs compared with wild type E-cadherin. We expected the average intercellular force for 
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the cells expressing the dileucine E-cadherin construct and the E-cadherin construct without the 

cytoplasmic domain to be lower compared to cells expressing the full-length E-cadherin construct 

(all with fluorescent protein tags for FRET). Instead, we found that the difference was statistically 

non-significant (Figure 16G). What might explain our result? We suspect that the endogenous E-

cadherin, which is expressed in all three cell lines, still dominates in terms of transmitting force at 

the cell-cell contact. However, it is possible that other types of cell-cell adhesion molecules (for 

e.g., other classic cadherins and desmosomal cadherins) may also be playing a role in cell-cell 

contact force transmission, especially if E-cadherin-based force transmission is impacted. 
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Figure 16 (A-G): Qualitative and quantitative analysis of intercellular forces between E-cadherin 

constructs. (A) Phase images of E-cadherin wild type (B) corresponding traction heat map. (C) 

Phase images of E-cadherin dileucine mutant and corresponding (D) traction heat maps. (E) Phase 

images of E-cadherin dileucine mutant and corresponding (F) traction heat maps. Scale bar 5 μm. 
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(G) Histogram of average intercellular forces between E-cadherin constructs. (E-cadherin wild 

type n = 11, E-cadherin dileucine mutant n = 10, E-cadherin tailless mutant n = 13). 
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Figure 16 (C-D): Qualitative and quantitative analysis of intercellular forces between E-cadherin 

constructs. (C) Phase images of E-cadherin dileucine mutant and corresponding (D) traction heat 

maps. Scale bar 5 μm. 
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Figure 16 (E-F): Qualitative and quantitative analysis of intercellular forces between E-cadherin 

constructs. (E) Phase images of E-cadherin dileucine mutant and corresponding (F) traction heat 

maps. Scale bar 5 μm. 

 

 

 

 

 

Figure 16 (G): Qualitative and quantitative analysis of intercellular forces between E-cadherin 

constructs. (G) Histogram of average intercellular forces between E-cadherin constructs. (E-

cadherin wild type n = 11, E-cadherin dileucine mutant n = 10, E-cadherin tailless mutant n = 13).  
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CHAPTER 

4. ENDOGENOUS SHEET-AVERAGED TENSION WITHIN A LARGE 
EPITHELIAL CELL COLONY 

 

Note: Contents of this chapter have been published in the Journal of Biomechanical Engineering: 

Dumbali SP, Mei L, Qian S, Maruthamuthu V. Endogenous Sheet-Averaged Tension Within a 

Large Epithelial Cell Colony. J Biomech Eng. 2017;139(10):1010081–1010085. 

 

The following contents, published in the Journal of Biomechanical Engineering, are based on the 

experiments conducted to examine endogenous tension within a large epithelial cell colony. 

Abstract 
 

Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect 

tissue shape changes during development and homeostasis. Endogenously generated intrasheet 

tension is a driver of such changes but has predominantly been measured in the presence of 

directional migration. The nature of epithelial cell-generated forces transmitted over supracellular 

distances, in the absence of directional migration, is thus largely unclear. In this report, we consider 

large epithelial cell colonies which are archetypical multicell collectives with extensive cell–cell 

contacts but with a symmetric (circular) boundary. Using the traction force imbalance method 

(TFIM) (traction force microscopy combined with physical force balance), we first show that one 

can determine the colony-level endogenous sheet forces exerted at the midline by one half of the 

colony on the other half with no prior assumptions on the uniformity of the mechanical properties 

of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations 

with orientation—the difference between the maximum and minimum sheet force is comparable 
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to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely 

tensile, but the shear component exhibits significantly more variation with orientation. We thus 

show that even an unperturbed epithelial colony with a symmetric boundary shows significant 

directional variation in the endogenous sheet tension and shear forces that subsist at the colony 

level. 

Keywords: epithelial colony, traction force, endogenous sheet tension, cell–cell contact 

 

4.1 Introduction 
 

The contractility of epithelial cells and the transmission of endogenous cell-generated forces over 

supracellular distances are important drivers of morphological changes at the tissue-level and 

beyond [132, 133]. In fact, epithelial sheets can use biochemical cues to break in-plane symmetry 

and generate anisotropic endogenous tension [134]. However, the nature of supracellular force 

transmission in epithelial sheets, even in the absence of developmental cues, is largely unclear. In 

this regard, in vitro cell collectives such as cell colonies, in spite of their limited size and presence 

of free boundary, are an accessible model system to understand the fundamental nature of 

endogenous forces and how they are transmitted in a multicellular context.  

 

Cell-generated forces are transmitted through multicellular epithelial sheets via cell–cell contacts 

bound by cell–cell adhesion structures, such as adherens junctions [133]. Forces transmitted 

through epithelial cell–cell contacts have been measured using multiple techniques local to the 

cell–cell contact [83, 135, 136] by using molecular tension sensors, oil droplets, and laser ablation. 

On the other hand, traction force microscopy-based methods [51, 137-141] have provided a 

complementary picture with quantitative measures of cellular force generation and transmission in 
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single cells, small islands, and expanding monolayers. However, our knowledge of force 

transmission in quiescent, large epithelial cell colonies is limited.  

 

While multiple studies have reported on forces transmitted in small islands of two or more cells 

[51, 137, 142, 143], studies on monolayers [140] have provided information on local forces, but 

with assumptions such as homogeneous cell mechanical properties across the monolayer. 

However, the dependence of cell stiffness on cell prestress suggests that cell mechanical properties 

may not be homogeneous across cell sheets [144]. Here, we consider a large epithelial cell colony 

(large in the sense that the extent of cell–cell contacts is much larger than the free cell colony 

boundary) that is also circular in shape. While the effect of the free boundary is itself not 

eliminated, the circular shape does eliminate directional cues due to asymmetric free boundaries. 

Without assuming uniform cell mechanical properties, while we cannot obtain local forces, we 

demonstrate that the endogenous forces within the cell sheet can be determined at the whole 

epithelial colony level. We also uncover significant variation of this large tensile force with 

orientation. 

 

4.2 Methods 
 
4.2.1 Cell Culture 
 

Dulbecco’s modified Eagle’s medium (Corning Inc., Corning, NY) supplemented with L- 

glutamine, sodium pyruvate, 1% Penicillin/streptomycin, and 10% fetal bovine serum (Corning 

Inc., Corning, NY) was used to grow Madin Darby canine kidney (MDCK) cells under 5% CO2. 

For plating micropatterned polyacrylamide (PAA) hydrogels, about 105 cells were plated on 35-

mm culture dishes with hydrogels and the medium was replaced within 0.5 h after plating. 
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4.2.2 Preparation and Micropatterning of Polyacrylamide Hydrogel Substrates 
 

 

Polyacrylamide gels were made with an acrylamide to bisacrylamide ratio of 7.5%:0.1%. Red 

fluorescent beads of diameter 0.44 μm (Spherotech Inc., Lake Forest, IL) were included as fiducial 

markers. For micropatterning the PAA gels [145], a 22mm x 22mm glass coverslip (no. 1.5) was 

first treated with deep UV light to render it hydrophilic. The coverslip was then incubated with a 

solution of 0.1 mg/ml poly(L-lysine)-poly(ethylene glycol) at pH 7.4 for 30 min. Then, it was 

exposed to deep UV light with a quartz chrome photomask (Toppan, Round Rock, TX) (with the 

500 μm clear circle in the light path) for 5 min. The coverslip was then incubated with 0.02 mg/ml 

collagen 1 protein (at pH 8.5) for 30 min. The PAA gel was then polymerized and sandwiched 

between the collagen-coated coverslip and an activated coverslip (activated by treating 

successively with 2% 3-aminopropyltrimethyoxysilane in isopropanol and 1% glutaraldehyde in 

distilled water). The resultant PAA gel had a thickness of ~150 μm as determined from z-stacks of 

images of fluorescent beads within the gel (Figure 17). 
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Figure 17: Micropatterning of Polyacrylamide Hydrogel Substrates. (A) Glass coverslip is made 

hydrophilic by exposing it under deep UV. It is then incubated with the crosslinker protein Poly-

L-Lysine Polyethylene Glycol for 30 minutes. (B) This coverslip is placed on quartz chrome 

photomask containing 500 um circular patterns. The mask is inverted upside down and exposed to 

deep UV to make the 500 um circular patterns hydrophilic. The chrome film outside the circular 

pattern blocks UV and helps forming hydrophilic surface only through the clear circular patterns. 

(C) The coverslip with circular micropatterns is incubated with collagen I protein for 30 minutes. 

(D) The PAA gel is polymerized between micropatterned coverslip and activated coverslip. After 

45 minutes of polymerization, cells can be plated on collagen coated micropatterned activated 

coverslip. 

 

4.2.3 Traction Force Measurements 
 

An imaging system consisting of a Leica DMi8 epifluorescence microscope (Leica Microsystems, 

Buffalo Grove, IL) with a 10 x 0.3 NA objective, HQ2 cooled CCD camera (Photometrics, Tucson, 

AZ) and an airstream incubator (Nevtek, Williamsville, VA) was used to obtain phase images of 

MDCK cell colonies and red bead images (from the top surface of the gel) beneath them. Bead 

images were also obtained after the colonies were removed using 10% sodium dodecyl sulfate. 

After image alignment using Image J [146], the displacement of the beads was calculated using 

MATLAB (MathWorks, Natick, MA) with code available at the website [4]. Traction forces were 

then reconstructed from the displacements of the gel surface using Regularized Fourier Transform 

Traction Cytometry, which employs the Boussinesq solution [127, 129, 147, 148]. 
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4.2.4 Sheet Force Calculations 
 

The epithelial sheet force at the colony mid-line was calculated similar to what was implemented 

for TFIM of cell pairs previously [51], except that the colony mid-line demarcated the two parts 

of the colony here. A binary mask (dilated by 10%) based on the micro-pattern diameter (0.5 mm) 

was used to select all traction forces exerted by the colony (to calculate the scalar sum 

Σ(colony)|Ti| or vector sum Σ(colony)Ti) so that noise contributions from regions away from the 

colony, as well as that due to the frame boundary, were avoided. Two half masks on either side of 

the colony midline (which in turn was constructed at an angle θ with respect to the horizontal) 

were used to select traction forces exerted by the two halves of the colony. The sheet force exerted 

on half 1 (by the other half, half 2) is F12 =  Σ(half1)Ti and the sheet force exerted on half 2 (by 

the other half , half 1) is F21 =  Σ(half2)Ti. The sheet force Fsheet is thus the average (F12 - F21)/2 

(the difference is used as F12 is directed roughly opposite to F21), with an associated error of (F12 

+ F21)/2 (as explained in ref [51]). If the angle made by the sheet force to the colony mid-line is α, 

the sheet tension at the mid-line is Fsheet sinα and the sheet shear is Fsheet cosα. All binary masks 

were created using ImageJ and all force calculations mentioned above were using custom-written 

scripts in MATLAB (MathWorks, Natick, MA). 

 
4.2.5 Finite Thickness Traction Computation 
 

The traction force under the epithelial cell colony was also computed (from the experimentally 

measured displacement field) taking into account the finite thickness of the substrate using a 

commercial finite element package, COMSOL. For this, substrate of dimensions width 3 mm, 

length 3 mm, and height 150 µm was assumed, with the experimentally measured displacement 

field applied on the top surface and the bottom surface fixed (zero displacement). We assumed 
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hydrogel properties of Young’s modulus 13.5 kPa and Poisson’s ratio 0.49. Tetrahedral mesh was 

employed with denser mesh on the top surface where the displacement field is imposed, with a 

total of 38,423 units in the mesh. The system was numerically solved using the Solid Mechanics 

module in COMSOL Multiphysics (COMSOL Inc., Burlington, MA) and the computation was 

carried out on a high-performance computing cluster at ODU, Norfolk, VA.  

 

4.3 Results 
 

We micropatterned collagen I as a half millimeter-wide filled circle on PAA gel and then plated 

MDCK cells on them, resulting in a cohesive circular epithelial cell colony (Figs. 18(A) and 

18(B)). Using TFIM, which has previously been used to determine the endogenous force exerted 

at a single cell–cell contact, we sought to determine the endogenous sheet force exerted within a 

large epithelial cell colony. Here, based on the position of submicron fluorescent beads in the PAA 

gel with and without the colony on it, we first determined the displacement field of the gel under 

the cell colony using particle image velocimetry and then computed the traction force field using 

regularized Fourier transform traction cytometry [51, 127, 148]. The traction stress field is 

depicted superimposed on the phase image of the epithelial cell colony in Fig. 18(B), with the 

corresponding traction stress heat map in Fig. 18(C). 
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Figure 18: (A) Schematic depiction of the epithelial cell colony on the PAA hydrogel. (B) Phase 

image of the circular MDCK cell colony with the traction stress vectors overlaid. Scale bar for 

distance is 50 μm and for traction vector is 1000Pa. (C) Heat map representation of the traction 

stress under the colony. 

 

The epithelial cell colony we consider exerts traction forces in a manner qualitatively different 

from small cell islands considered in many previous studies. While small cell islands (wherein the 

extent of free edge boundaries are comparable to that of cell–cell contacts) have been previously 

shown to predominantly exert large traction stresses only near the islands edges [51, 139, 142, 

143], the larger colony considered here (wherein the contour length of free edge boundary is much 

less than the contours of all the cell–cell contacts within the colony) exerts large traction stresses 
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at the edges as well as in the interior regions of the colony (Fig. 18(C)). In fact, when we considered 

above average traction stresses as a proxy for large traction stresses, we found that their frequency 

distribution (Fig. 19(A)) was similar in the central, medial, and distal regions across the colony 

(pooled from n¼6 epithelial colonies). Next, in order to be able to apply TFIM, the vector sum of 

traction forces exerted by the cell colony should vanish (or be close to zero, subject to experimental 

error). We thus determined the vector sum of traction forces as well as the scalar sum (sum of the 

magnitudes) of traction forces exerted by the cell colonies (Fig. 19(B)). The magnitude of the ratio 

of the vector sum to the scalar sum of traction forces under the colony was 562%, comparable to 

that for the case of single cells or cell pairs [51]. 
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Figure 19: (A) Distribution of the magnitudes of traction stresses exerted under the central, medial, 

and distal regions within the colonies. Only above average traction stresses (used as a proxy for 

significant/large traction stresses) are considered in this plot. Data are pooled from n = 6 colonies. 

(B) Traction forces under each epithelial cell colony are balanced. The vector sum for each of the 

colonies is close to zero relative to the scalar sum of the traction forces that are shown for 

comparison. n = 6 colonies. 

 

 

 

Figure 20: (A) Schematic depiction of the physical force balance used to determine the intrasheet 

force at the colony midline. (B) Variation of the intrasheet force at the colony midline as a function 
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of the orientation of the midline for the colony shown in Figs. 1(A) and 1(C). (C) The maximum 

and minimum sheet force in a colony normalized by its average sheet force across all orientations 

(n = 6 colonies). 

 

Traction force imbalance method is premised on the balance between (the reaction to) traction 

forces exerted by the substrate on the part of the cell island under consideration and the endogenous 

forces exerted on this part of the cell island by the rest of the cell island [51]. Using TFIM, we 

sought to determine the endogenous sheet force exerted at the colony midline by one half of the 

colony on the other. Figure 20(A) illustrates the external forces acting on one half of the cell colony 

and the force balancing principle underlying TFIM as applied to the colony. However, as evident 

in Fig. 20(A), the orientation of the midline can vary over 180 deg (i.e., the angle of the midline 

with the horizontal can be anywhere between 0 deg and 180 deg). Thus, we calculated the 

endogenous sheet force within the colony as a function of the orientation of the midline. For the 

colony shown in Fig. 18(B), we found that, remarkably, the endogenous sheet force (which was 

largely perpendicular to the midline, as mentioned further below) varied between a minimum of 

700 ± 310 nN to a maximum of 2060 ± 310 nN as a function of the midline orientation (Fig. 20(B)) 

(see Sec. 4.2 for method of error estimation). Thus, the range of variation of the endogenous sheet 

force was comparable to the average sheet force of the colony (1330 nN, averaged over all midline 

orientations). For n = 6 colonies, the average endogenous sheet force at the colony midline, 

averaged over all orientations for each colony, was found to be 1310 ± 400 nN (see Sec. 4.2 for 

method of error estimation) and the maximum and minimum endogenous sheet force differed, on 

average, by 63% of the average sheet force of each colony (Fig. 20(C)). 
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Figure 21: (A) Variation of the tensile and shear components of the endogenous sheet force at the 

colony midline with the orientation of the midline, shown for three representative colonies with 

similar average sheet force. (B) Normalized variation in the sheet tension and shear within each 

colony in % (n = 6 colonies). 

 

In order to further explore the nature of the endogenous sheet force, we resolved it into tensile and 

shear components (as schematically depicted in Fig. 21(A) inset). Figure 21(B) shows the variation 

of the tensile and shear components with the midline orientation in three separate colonies with 

similar endogenous sheet forces. We found that, first, the endogenous sheet force is largely tensile 

in nature (i.e., the sheet force is largely perpendicular to the corresponding colony midline). 

Second, although smaller, whole colony-level shear forces persist at the midline. As evident in 

Fig. 21(A), the absolute variation in the tensile and shear forces was comparable. But since the 
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shear forces are smaller in magnitude, the normalized variation (standard deviation/mean) in shear 

forces far exceeded that in the sheet tension at the midline (Fig. 21(B), n = 6 colonies). Thus, even 

though the net shear force vanished for specific orientations of the midline, they persist at the 

colony level in general, with an average magnitude of about one-fifth that of the sheet tension.  

 

To demonstrate that the traction forces as well as the intrasheet tension that we determined here 

are ultimately due to cell-generated contractility and are not simply an experimental artifact, we 

determined their dependence on Rho-kinase activity. Rho-kinase is a Rho-GTPase effector that 

indirectly promotes myosin activity and hence contractility [149]. We used Y27632, a 

pharmacological inhibitor of Rho-kinase to reduce cell contractility and tested the effect of this on 

the measured traction and endogenous sheet forces. As shown in Fig. 22(A), treatment with 50 lM 

Y27632 for 1 h reduced the traction forces to near-background levels. The anisotropic endogenous 

sheet forces also concomitantly reduced drastically (Fig. 22(B)). For n = 4 colonies, 1 h of 

treatment with Y27632 reduced the endogenous sheet forces by 79 ± 5%.  
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Figure 22: Traction and sheet forces are Rho-kinase sensitive. (A) Heat map representation of the 

traction stress under the MDCK cell colony before and after 1 h of treatment with 50 μM of the 

Rho-kinase inhibitor Y27632. (B) Variation of the intrasheet force at the colony midline as a 

function of the orientation of the midline before and after 1 h treatment with Y27632. 



www.manaraa.com

65 
 

 
 

 

 

 



www.manaraa.com

66 
 

 
 

Figure 23: (A) Heat map representation of the traction stresses under the colony computed using a 

finite element model of the substrate as a linear, isotropic elastic medium of finite thickness (of 

150 μm). Compare with the Boussinesq solution in Fig. 18(C). (B) Comparison of the intrasheet 

force at the midline obtained using the Boussinesq solution and the FEM result considering the 

finite thickness of the substrate. Estimated errors (not shown in the figure) in the Boussinesq 

solution sheet force are 310 nN and in the FEM results sheet force are 670 nN.  

 

Since we used the Boussinesq solution in traction force calculations, we finally wanted to assess 

whether the finite thickness of the substrate (that varied between 150 and 200 μm) influenced the 

central result of this paper. To do this, we performed finite element method (FEM) computations 

taking into account finite substrate thickness (see Sec. 3.2) and compared this with the Boussinesq 

solution. As shown in Fig. 23(A), the traction heat map of the same colony as in Fig. 18(B) was 

largely similar. More importantly, the FEM results (that took finite substrate thickness into 

account) also yielded similar anisotropy in the endogenous sheet tension (Fig. 23(B)). Comparison 

of the sheet tension calculated using traction values obtained from the Boussinesq solution and the 

traction values obtained using the FEM with finite substrate thickness showed that they differed 

by ~15%, comparable to the error in the computation of the sheet tension itself. Thus, the key 

finding of this work (i.e., anisotropy of the sheet force, which is predominantly tensile) was also 

exhibited by the sheet force calculated using the traction forces from the FEM computation which 

took finite substrate thickness into account. 
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4.4 Discussion 
 

We found that the endogenous sheet forces within large epithelial colonies display high tension 

and anisotropy. The average magnitude of the endogenous sheet tension normalized by the sheet 

diameter, i.e., the average sheet tension per unit length that we find for the colony, is 2.5 ± 0.8 

nN/μm. This is comparable to a similar measure recently reported for a unidirectionally expanding 

MDCK sheet along the direction of expansion [150] and to the local cell–cell tension calculated in 

much smaller islands with the assumption of uniform cell island mechanical properties [151]. This 

suggests that even quiescent epithelial cell colonies (not engaged in directed migration) are in a 

highly tense state and this tensional state may be expected to regulate multiple biochemical 

processes that maintain homeostasis of the cell colony. 

 

It is worth noting that, unlike for cell pairs [51, 137, 142], the endogenous sheet tension within the 

colony determined here using TFIM involves contributions from tension both perpendicular and 

parallel to individual cell–cell contacts, as the cell–cell contacts themselves are multiply oriented 

in an unrestrained manner near the colony midline. Thus, the endogenous sheet tension reported 

here is a useful metric to characterize the tensional state of an epithelial colony and it reflects 

tension transmitted through cell–cell contacts and the cells themselves with a colony. 

 

The large circular epithelial cell colony and its sheet forces determined here using TFIM can help 

bridge the gap between studies involving cell pairs/small islands [51, 137, 143] where the extent 

of free boundary is comparable to the extent of cell–cell contacts and studies of colonies and 

expanding monolayers [151, 152] where uniform cell mechanical properties have been assumed. 

While seminal studies of expanding monolayers [140, 152] have the advantage of obtaining local 
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forces, it involves approximations at the frame boundaries and the assumption of uniform cell 

mechanical properties [152]. While our current approach has the disadvantage that it does not 

obtain local forces, but only average sheet forces (which implies that variations along the midline 

cannot be captured), it has the advantage of obtaining data from a single frame without similar 

assumptions at the frame boundaries or assumption of uniform cell mechanical properties. Thus, 

our approach here provides an alternative means to obtain useful mechanical readouts from cell 

collectives but has the disadvantage that local forces are not obtained. Our experimental model 

also has a free boundary, but the effect of the boundary is less significant than that for small cell 

islands in that large traction stresses are no longer limited to the cell island periphery here (as 

depicted in Fig. 19(A)). Comparison of the average sheet tension obtained here (~2.5 nN/μm) with 

a corresponding average measure reported [24] in a unidirectionally expanding monolayer of the 

same cell type (average of ~2.7 nN/μm) leads us to estimate that the effect due to the free boundary 

may be causing a difference in the vicinity of 10%. However, sheet tension during individual time 

points of monolayer expansion [150] varied by as much as  ̶ 12% to +28%, relative to the average 

value reported here. Further studies with even larger colonies and monolayers should enable 

greater comparison between, and integration of, conclusions from the earlier studies and the extent 

to which anisotropies in sheet tension diminish or persist. 

 

What might cause the directional variation in the endogenous sheet forces observed here? When 

we quantified the variation in the number of cells in each octant of each colony, we found that the 

standard deviation in cell number per octant for each colony was in the range of 10–20%. We 

could also detect no significant spatial changes in cell extracellular matrix deposition when we 
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assayed for collagen or fibronectin using immunofluorescence (the immunofluorescence was 

dominated by the cytoplasmic pool, data not shown). While we cannot conclusively rule out spatial 

variation in cell density or extracellular matrix as contributing factors to the orientation 

dependence of the sheet tension, we propose that cell-to-cell heterogeneities in force generation 

and transmission brought about by variations in the architecture and composition of the 

cytoskeletal, adhesive, and contractile apparatus may well play a major role. Just as determination 

of the endogenous force at a single cell–cell contact offers insight into the dynamic organization 

of a cell pair [142], knowledge of colony-level forces and specific biochemical factors inside the 

cells that lead to their directional variation can be expected to yield insights into larger scale 

multicellular rearrangements.  
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CHAPTER 

5. α-CATENIN: A KEY REGULATOR OF ENDOGENOUS 
INTERCELLULAR FORCE TRANSMISSION 

 

 

5.1 Introduction 
 
5.1.1 Role of α-Catenin in the Catenin-Cadherin Complex 
 

In multicellular organisms, tissue integrity significantly depends on strong adhesion between 

neighboring cells. As discussed in Chapter 1, this cell-cell adhesion is mediated by protein 

complexes that are part of junctions, such as an adherens junction, a tight junction and a 

desmosomal junction. A tight junction facilitates a barrier between either side of the cell layer 

while a desmosomal junction resists mechanical stress experienced within the epithelium, thereby 

maintaining the integrity. An adherens junction not only initiates cell-cell contact but also leads 

formation of the other junctional complexes [153]. Adherens junctions are formed by the assembly 

classical cadherins, catenins and associated proteins. The cytoplasmic domain of cadherin links to 

different cytoplasmic proteins including β-catenin, α-catenin and p120 catenin to facilitate the 

adherens junction. α-catenin is an actin-binding and bundling protein that contains vinculin 

homology domains [153] (Figure 24). 

 

Earlier studies have shown that mutations in the cadherin-catenin complex or epigenetic 

modifications related to them may lead to cancer [154]. It has been shown that reduction in α-

catenin levels may lead to weak formation of the  adherens junction, irrespective of E-cadherin or 

β-catenin [155]. It was also found that, in human cancerous tissue, the downregulation of α-catenin 

interfered with the catenin-cadherin complex, thereby weakening the cell-cell junctions [155]. 
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Figure 24. Function of α-catenin in cell-cell contacts. (A) Schematic representation of α-catenin 

structure showing β-catenin, vinculin and filamentous actin (F-actin) binding regions. (B) Role of 

α-catenin in the cadherin-catenin complex. During cell-cell contact formation, E-cadherin-E-

cadherin binding enhances the linking of the cadherin-catenin complex to actin. α-catenin plays an 

important role as a linker between β-catenin and filamentous actin. A vinculin homology domain 

also binds to the head of vinculin. 

 
 



www.manaraa.com

72 
 

 
 

5.1.2 Importance of α-Catenin in Intercellular Force Transmission 
 

During morphogenesis and in cancer cell invasion, endogenous force transmission between 

neighboring cells facilitates morphological changes. The transmission of these forces is achieved 

by strong mechanical coupling between the cells primarily via the adherens junctions [156]. 

Adherens junction not only serves as a stage to detect variations in tension exerted by the adjacent 

cells but also helps transmitting this information amongst the cells [83, 157]. The contraction of 

the peripheral actomyosin ring exerts endogenous centripetal force which is experienced by 

neighboring cells by means of the E-cadherin-catenin complex. In response to this cortical tension, 

neighboring cells remodel their cadherin-catenin-actomyosin linkage [156]. This adaptation results 

in effective transmission of forces to other immediate cells. In order to assess the cellular response, 

it is important to understand how the mechanical signals are converted into biochemical signals. 

When a cadherin junction experiences mechanical force, α-catenin undergoes conformational 

changes thereby activating the domain associated with vinculin binding [158]. Recruitment of 

filamentous actin at an adherens junction also actively influences the activation of α-catenin. This 

suggests that α-catenin is a key player in intercellular force variations at the adherens junction. In 

addition to this, Rho A activation (dependent on α-catenin) influences adherens junction 

remodeling [156]. Recent studies have shown further how α-catenin can influence adherens 

junction assembly via vinculin recruitment [41, 159].  
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5.1.3 Effect of α-Catenin-Vinculin Binding at Cell-Cell Junctions 
 

One of the widely known components of cell-ECM adhesions is vinculin. Vinculin is also present 

at the site of cadherin junctions. It functions with at least two known conformations: an active 

conformation when its domains can interact with other ligands and an inactive conformation that 

prevents any such interactions [160]. The active conformation initiates with disruption of the head-

tail interactions [161]. On the other hand, cell-cell junctions require active vinculin binding to 

proteins like α-catenin that have both signaling capabilities and structural roles [162]. One of the 

studies showed that α-catenin and actin filaments can initiate an active vinculin conformation. 

FRET results highlighted the closed conformation of vinculin with high FRET signal, as the two 

selected fluorophores were close to each other initially, but lower FRET signals were recorded 

after the addition of α-catenin with just the vinculin binding domain or actin filaments [163]. This 

was concentration dependent and implied that actin and α-catenin binding to vinculin separates the 

fluorophores, proving their roles in the activation of vinculin. 

 

Vinculin has been shown to play a crucial role in maintaining the integrity of E-cadherin junctions. 

Vinculin knockout cells show reduced affinity of E-cadherin adhesions. Immunofluorescence 

results suggested that these cells have lower expression levels of E-cadherin compared to control 

cells. This indicated that the presence of vinculin can strengthen E-cadherin junctions. 
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5.2 Results and Discussion 
 
5.2.1 Intercellular Force Quantification to Study the Effects of α-Catenin 
 

As α-catenin plays a role in adherens junctions and influences intercellular dynamics, I 

investigated how the level of α-catenin affects intercellular forces. Soft silicone gel with ~10 kPa 

Young’s Modulus was fabricated and was coupled with Collagen I protein. MDCK cells and 

MDCK cells with α-catenin knocked out (KO) (a gift from the Conway Lab, VCU) were 

considered initially to test the effect on intercellular forces. The ‘α-catenin KO’ cells still expressed 

a truncated version that only did not contain the N-terminal, β-catenin binding domain, but with 

other binding domains intact. These cells were plated on the soft silicone gel sparsely in order to 

facilitate cell pair formation. These were then imaged, and the forces quantified using traction 

force microscopy, as detailed in Chapter 3. Representative images of MDCK and MDCK α-catenin 

KO cell pairs and the associated traction forces are shown in figures 25-26. Figure 27 shows the 

distribution and the median intercellular force for MDCK (n=39) and MDCK α-catenin KO (n=30) 

cell pairs. The average intercellular force for MDCK cells was found to be 55 ± 27 nN while that 

of MDCK α-catenin KO cells was 39 ± 22 nN. This means that the N-terminal region of α-catenin 

is necessary for normal intercellular force transmission.  
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Figure 25: Traction forces within a MDCK cell pair. (A) Phase image of a cell pair. Red arrows 

indicate traction stress vectors. (B) Heat map plot indicating the magnitudes of the traction stresses 

in (A). (Scale: 5 μm) 
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Figure 26: Traction forces within a MDCK α-catenin KO cell pair. (A) Phase image of a cell pair. 

Red arrows indicate traction stress vectors. (B) Heat map plot indicating the magnitudes of the 

traction stresses in (A). (Scale: 5 μm) 
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Figure 27: Violin plot showing the comparison of median intercellular forces between MDCK 

cells and MDCK α-catenin KO cells. The median weight of intercellular force for MDCK is higher 

that MDCK α-catenin KO. * indicates P value = 0.0145. 

 

The distribution of intercellular force within MDCK cell pairs was pooled form 39 data points, 

while MDCK α-catenin KO was pooled from 30 data points. The comparison of intercellular forces 

of MDCK and MDCK α-catenin KO was carried out using a T-test. The P-value was found to be 

0.0145 (P < 0.05) which showed that there is a statistically significant difference between these 

two cell lines. 
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Figure 28: Immunofluorescence images showing actin localization for (A) MDCK cell pairs and 

(B) MDCK α-catenin KO cell pairs. 

 

In order to ascertain as to why force transmission could be different, I stained for actin in cell pairs. 

While there were prominent actin bundles perpendicular to the cell-cell contact at either end of the 

cell-cell contact in MDCK cell pairs, cell-cell contacts in MDCK α-catenin KO cell pairs instead 

showed prominent actin bundles parallel to the cell-cell contact (Figure 28), indicating that the N-

terminal region of α-catenin is required for normal actin bundle organization and force 

transmission at cell-cell junctions.  

 

5.2.2 Absence of α-Catenin decreases Cell-ECM Traction Forces also 
 

We also measured traction forces in single MDCK and MDCK α-catenin KO cells. Figures 29 and 

30 shows phase and traction heat map images of MDCK and MDCK α-catenin KO single cells. 

We found that cell-ECM forces were also lower in case of MDCK α-catenin KO cells. As α-catenin 

does not take part in integrin-based cell-ECM adhesion, lower traction forces were indicative of 

some other phenomenon involving α-catenin. According to one study, absence of α-catenin can 

promote branched actin nucleation by Arp 2/3 activity [19]. This increase in branched actin 

filaments, compared to linear actin bundles, can in turn affect cell-ECM traction forces.  
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Figure 29: Traction forces within a MDCK single cell. (A) Phase image of a single cell. Red arrows 

indicate traction stress vectors. (B) Heat map plot indicating the magnitudes of the traction stresses 

in (A). (Scale: 5 μm) 
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Figure 30: Traction forces within a MDCK α-catenin KO single cell. (A) Phase image of a single 

cell. Red arrows indicate traction stress vectors. (B) Heat map plot indicating the magnitudes of 

the traction stresses in (A). (Scale: 5 μm) 



www.manaraa.com

82 
 

 
 

 

 

Figure 31: Violin plot showing median of strain energy comparison between MDCK and MDCK 

α-catenin KO single cells. The median strain energy for MDCK is higher than that for MDCK α-

catenin KO. * indicates P-value = 0.0018. 

 

As a reflection of the traction forces, the strain energy stored in the substrate due to its deformation 

by traction forces exerted by MDCK α-catenin KO cells, is shown to be lower compared to MDCK 

cells (figure 31). In Figure 31, a violin plot shows that the median of strain energies of MDCK α-

catenin KO (n=19) was lower compared to MDCK (n=21). A T-test was carried out to assess 

statistical significance: a P-value of 0.0018 implies a statistically significant difference.  
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5.2.3 Mutants Influencing Vinculin Binding to α-Catenin 
 

To assess the role of vinculin binding to α-catenin in mediating inter-cellular force transmission at 

the cell-cell junction, I carried out traction force microscopy experiments using α-catenin KO 

rescue mutants. α-catenin rescue mutant α-catenin-L344P rescue (substituting leucine 344 by 

proline) was generated (gift from Conway Lab, VCU), which inhibits vinculin binding and 

activation [164]. This rescue mutant rescues α-catenin in MDCK α-catenin KO cells with vinculin 

binding blocked. Another α-catenin mutant, α-catenin-CA rescue was designed, where CA stands 

for constitutively active α-catenin. This mutant rescues α-catenin KO cells with an ‘always active’ 

α-catenin with higher affinity towards vinculin. Finally, the WT rescue consists of α-catenin KO 

cells that are then made to exogenously express full length α-catenin. Both cell pair and single cell 

traction measurement results for the above three rescues are presented in what follows. 
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Figure 32: Traction forces within a MDCK α-catenin KO α-catenin-L344P rescue cell pair. (A) 

Phase image of a cell pair. Red arrows indicate traction stress vectors. (B) Heat map plot indicating 

the magnitudes of the traction stresses in (A). (Scale: 5 μm) 
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Figure 33: Traction forces within a MDCK α-catenin KO α-catenin-CA Rescue cell pair. (A) Phase 

image of a cell pair. Red arrows indicate traction stress vectors. (B) Heat map plot indicating the 

magnitudes of the traction stresses in (A). (Scale: 5 μm) 
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Figure 34: Traction forces within a MDCK α-catenin KO α-catenin-WT Rescue cell pair. (A) 

Phase image of a cell pair. Red arrows indicate traction stress vectors. (B) Heat map plot indicating 

the magnitudes of the traction stresses in (A). (Scale: 5 μm) 
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Figure 35: Traction forces within a MDCK α-catenin KO α-catenin-L344P rescue single cell. (A) 

Phase image of a single cell. Red arrows indicate traction stress vectors. (B) Heat map plot 

indicating the magnitudes of the traction stresses in (A). (Scale: 5 μm) 
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Figure 36: Traction forces within a MDCK α-catenin KO α-catenin-CA rescue single cell. (A) 

Phase image of a single cell. Red arrows indicate traction stress vectors. (B) Heat map plot 

indicating the magnitudes of the traction stresses in (A). (Scale: 5 μm) 
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Figure 37: Traction forces within a MDCK α-catenin KO α-catenin-WT rescue single cell. (A) 

Phase image of a single cell. Red arrows indicate traction stress vectors. (B) Heat map plot 

indicating the magnitudes of the traction stresses in (A). (Scale: 5 μm) 

 

In order to assess the localization of α-catenin and vinculin at cell-cell contacts, we performed 

immunofluorescence with cell pairs of rescue cells. Figures 38 and 39 present immunofluorescence 

images of the cell lines stained for α-catenin and vinculin (discussed further below). Intercellular 

forces were computed from traction maps for cell pairs for all rescue cell lines. The results (Figure 

40) showed that the inter-cellular force was not significantly different for either the L344P α-

catenin rescue or the CA α-catenin rescue cell pairs. Surprisingly, there was a statistically 

significant difference between MDCK and the WT α-catenin rescue, which could be possibly due 

to species-specific differences (the α-catenin rescue constructs were from chicken) or due to the 

fact that the ‘WT rescue’ expressing full length α-catenin in addition to the N-terminal region 

lacking truncated α-catenin. 

 

I also computed the strain energy due to single cell traction forces. As the box plot in Figure 41 

shows, all rescue constructs had lower levels of traction force (associated strain energy) than 

MDCK cells. This may reflect the altered extra-junctional roles of α-catenin, such as its role in 

inhibiting Arp2/3.  

 

Immunofluorescence images showed that α-catenin was prominently localized in MDCK, L344P 

rescue cells and CA rescue cells, but was expectedly absent in α-catenin KO cells, as shown in 

Figure 38. As shown in Figure 39, vinculin was localized at cell-cell contacts levels in cell pairs 
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in all four cases (MDCK, L344P rescue cells, CA rescue cells and α-catenin KO cells). However, 

CA rescue cells appear to show slightly more prominent vinculin localization at cell-cell contacts 

(Figure 39). (We have not quantified the localization levels here, but there was significant 

heterogeneity for each case when considering several cell pairs.) Taken together with the inter-

cellular force measurements, this means that vinculin levels are not particularly indicative of the 

level of inter-cellular force in cell pairs. It is worth noting that β-catenin can also recruit vinculin, 

independently of α-catenin. Thus, α-catenin-vinculin binding may not be the main determinant of 

endogenous force levels. 
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Figure 38: Immunofluorescence images of α-catenin expression levels within cell pairs of (A) 

MDCK, (B) MDCK α-catenin KO, (C) MDCK α-catenin KO α-catenin-L344P Rescue, (D) 

MDCK α-catenin KO α-catenin-CA Rescue. 

 



www.manaraa.com

93 
 

 
 

 

 

 

Figure 39: Immunofluorescence images of vinculin expression levels within cell pairs of (A) 

MDCK, (B) MDCK α-catenin KO, (C) MDCK α-catenin KO α-catenin-L344P Rescue, (D) 

MDCK α-catenin KO α-catenin-CA Rescue. 
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Statistical analysis using ANOVA and multiple-comparison of intercellular forces is shown in 

Table 1 and statistical analysis using ANOVA and multiple-comparison of single cell strain 

energies (associated with traction forces) is shown in Table 2. 

 

 

 

Figure 40: Box plot showing median intercellular force comparison between MDCK and MDCK 

α-catenin rescue mutant cell pairs. The boxes’ notches of MDCK (control) and MDCK α-catenin 
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KO α-catenin-WT Rescue (control) showing no overlap which indicates is strong evidence of 

significant difference. 

 

 

 

 

 

Table 1: ANOVA output for multiple comparison of intercellular forces. Cell types: (1) MDCK 

(2) MDCK α-catenin KO α-catenin-L344P Rescue (3) MDCK α-catenin KO α-catenin-CA Rescue 

(4) MDCK α-catenin KO α-catenin-WT Rescue. 
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Figure 41 : Box plot showing median strain energy comparison between MDCK and MDCK α-

catenin rescue mutant cell pairs. The boxes’ notches for the cases MDCK (control) and MDCK α-

catenin KO α-catenin-WT Rescue (control), and MDCK α-catenin KO α-catenin-L344P Rescue 
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(negative control) and MDCK α-catenin KO α-catenin-CA Rescue (negative control) showing no 

overlap which indicates is strong evidence of significant difference, respectively. 

 

 

 

 

 

Table 2: ANOVA output for multiple comparison of strain energies. Cell types: (1) MDCK (2) 

MDCK α-catenin KO α-catenin-L344P Rescue (3) MDCK α-catenin KO α-catenin-CA Rescue (4) 

MDCK α-catenin KO α-catenin-WT Rescue.  
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CONCLUSION AND FUTURE SCOPE 
 

Inter-cellular forces influence how cells mechanically communicate with each other. Thus, it is 

important to: (i) measure inter-cellular forces and (ii) understand what factors influence the level 

of these forces. In Chapter 3, we showed that the inter-cellular force at a single cell-cell contact in 

cell pairs is similar for MDCK cells exogenously expressing FRET constructs of full-length E-

cadherin as well as E-cadherin mutants. Even though these constructs were recently shown to have 

different molecular tension levels, we found that the total inter-cellular force was similar. This 

means that the endogenous E-cadherin was still the important factor that determined inter-cellular 

force. This implies that, to see the effect of mutant constructs better, one needs to, preferably, 

deplete the endogenous pool of wildtype protein. This informed our studies in Chapter 5. Both the 

actin cytoskeleton and adhesion receptor proteins both influence intercellular junctional forces. 

Factors that affect the levels of cytoskeleton-adhesion linkages are thus important to study. My 

research thus focused on investigating key players of intercellular junctional proteins such as α-

catenin and vinculin. Our results showed that knockout of α-catenin can significantly decrease 

both intercellular and traction forces. The fact that knockout of α-catenin even affected single cell 

traction forces suggests that the extra-junctional role of α-catenin is relatively under appreciated. 

One of the eligible candidates mediating this effect could be actin related protein Arp 2/3, which 

mediates the nucleation of branched actin filaments. Based on the literature discussed in section 

5.2.2, it is evident that α-catenin, when expressed in higher amounts, can inhibit Arp 2/3 from 

forming branched actin filaments. 

 

To study the effect of vinculin binding to α-catenin at intercellular junctions, I examined MDCK 

cells expressing α-catenin mutants, which can bind to vinculin to different extents. The inter-
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cellular forces for the L344P and CA α-catenin rescue cells did not differ from MDCK, but the 

WT rescue, surprisingly, had slightly higher intercellular forces.  As the α-catenin rescue mutants 

were constructed from chicken and transfected in dog kidney epithelial cells, there is a possibility 

of species-specific changes involved. The fact that the ‘WT rescue’ expressed the truncated and 

full length α-catenin may also be a possible explanation. In any case, the single cell traction forces 

for all rescue cells were lower than that for MDCK cells, suggesting that it is important to study 

and investigate the role of actin nucleators Arp 2/3 and formins, which may be involved in extra-

junctional roles of α-catenin. Examining the role of vinculin further can also expand our 

understanding of intercellular and cell-ECM junctions and the forces that regulate these junctions. 

While inter-cellular force measurements with cell pairs are a useful system for understanding cell-

cell force transmission, the use of larger systems, such as our micropatterned islands in Chapter 4, 

will enable us to understand force transmission in epithelial tissues better. Use of such large, but 

well defined, systems can help complement results obtained with approaches such as monolayer 

stress microscopy, but without the simplifying assumptions employed in the latter. Further 

improvements in inter-cellular force measurements and better understanding of the molecular 

factors that affect inter-cellular forces can be expected to advance fields such as developmental 

biology and tissue engineering. 
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